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A rigorous method for the homogenization of general elastoplastic periodic lattices is
applied to 3D cellular solids. Tetrakaidecahedral unit cell problems are solved to determine
the overall yield surface of foams. Non-symmetric material distribution is introduced and
new results concerning the influence of this type of defect are obtained. They show that
non-uniform material distribution increases the overall strength, except in particular
loading directions and that non-symmetry has no significant influence on the yield surface.
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1. Introduction
Since the pioneering work on the mechanics of cel-
lular solids by Gent and Thomas [1] as well as by
Patel and Finnie [2] appeared, much work has been
performed to an appropriate modelling of the effective
elastic-perfectly plastic behavior of solid foams. Com-
prehensive treatises on elastic-perfectly plastic of solid
foams are found in textbooks such as the well-known
work by Gibson and Ashby [3]. Using simple beam
theory, Klintworth and Stronge [4] proposed failure
envelopes for regular honeycombs with respect to var-
ious elastic and plastic cell crushing modes. Gibson
et al. [5] studied the biaxial yield surface of 2-
dimensional honeycombs and the triaxial yield surface
of 3-dimensional open-celled foams. In most of these
studies, an upper bound on the plastic collapse stress is
given by equating the work done by the applied stress
to the plastic work done at the hinges corresponding
to the considered collapse mode. More recently, Kim
and Al-Hassani [6] developped an anisotropic hexago-
nal model to show the effects of strut morphology on
plastic yield surface. Chen et al. [7] studied the influ-
ence of six different types of geometrical imperfection
on the ultimate strength of 2D cellular solids. In these
both cases, studied defects are symmetric and all the
nodes of the lattice have the same weight.

The homogenization of periodic cellular solids with
general cellular geometry and topology has been al-
ready presented in [8] and applied to 2D cellular solids
with non-symmetric material distribution. The overall
yield surface of cellular materials seen as periodic lat-
tices of elastic-perfectly plastic beams that are rigidely
connected in vertices is determined by solving a dis-
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crete yield design problem attached to the unit cell.
This homogenization approach extends to limit analy-
sis the method which has been previously presented in
Sab [9], Pradel and Sab [10], Pradel [11] and Laroussi
et al. [12], for elastic lattices.

The purpose of this work is to extend to 3D lattices
the analysis for 2D cellular solids presented in [8]. The
outline is as follows. Presented in Section 2 is a sum-
mary of the general homogenization method proposed
in [8]. In Section 3, the symmetry of lattices is studied
and used to simplify the unit cell problem. Section 4 is
dedicated to the identification of the overall strength of
a 3D Euler-Bernouilli beam with non-uniform section.
Then, the discrete unit cell problem is set and solved in
Section 5, for the determination of the overall strength
properties of a tetrakaidecahedral lattice. The influence
of non-symmetric defects is studied. The presentation
is then concluded in Section 6 with a short summary of
the results.

2. The static homogenization method for
yield design of periodic discrete media [8]

The purpose of this section is to recall the static method
for the determination of the macroscopic strength do-
main of general periodic lattices. Cellular materials
seen as periodic lattices of beams that are rigidely con-
nected in vertices will be considered in this paper. For
these materials, particles are vertices of the lattice and
interacting particles are couples of vertices which are
connected by a beam element. The static method, which
has been presented in [8] and applied to honeycomb
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materials, is based on the resolution of a unit cell prob-
lem involving a finite number of periodic interaction
forces and moments between the particles of the lattice.
One can find in [13] a similar approach in the context of
homogenization for granular materials. It is a general-
ization of the well-known homogenization method for
the determination of the macroscopic strength domain
of a continuum heterogeneous material which has been
initially developped by Suquet [14], de Buhan [15] and
Bouchitté [16] for periodic media, and by Sab [17] for
random media.

Particles Pα,i , α = (α1, α2, α3) ∈ Z
3, i = 1, . . . , n,

of the so-called n-type lattice are generated by period-
icity with n particles as follows:

∀i = 1, . . . , n, ∀α ∈ Z
3,

Xα,i = X0,i + α1a1 + α2a2 + α3a3

where Xα,i is the coordinates vector of Pα,i in the
reference configuration, and a1, a2 and a3 are three
vectors forming a base in the 3-dimensional Euclidean
space. |Y | = |det(a1, a2, a3)| denotes the volume of
the parallelepipedic cell constructed from this base,
and P denotes the set of all particles of the lattice. It
is assumed that, for every particle P ∈ P , there exists
a unique couple of α ∈ Z

3 and i = 1, . . . , n such that
P = Pα,i .

Let c = {Pβ, j , Pα,i } be an interacting couple of par-
ticles: f α,i

c
(resp. f β, j

c
) is the force exerted by particle

Pβ, j (resp. Pα,i ) on particle Pα,i (resp. Pβ, j ), and mα,i
c

(resp. mβ, j
c ) is the moment at point Xα,i (resp. Xβ, j ) ex-

erted by particle Pβ, j (resp. Pα,i ) on particle Pα,i (resp.
Pβ, j ). Fig. 1. The interaction forces and moments of
couple c, noted

Ic = {
f β, j

c
, mβ, j

c , f α,i
c

, mα,i
c

}

are self-balanced:

f α,i
c

+ f β, j
c

= 0

mα,i
c + mβ, j

c − f α,i
c

∧ lα,i
c = 0 (1)

or, equivalently,

f α,i
c

+ f β, j
c

= 0

m̂α,i
c + m̂β, j

c = 0

Figure 1 Interaction forces and moments.

where

lα,i
c = Xβ, j − Xα,i

lβ, j
c = Xα,i − Xβ, j = −lα,i

c

are the branch vectors, and m̂α,i
c (resp. m̂β, j

c ) is the
moment at the mid-point of Pα,i and Pβ, j which is
exerted by particle Pβ, j (resp. Pα,i ) on particle Pα, j

(resp. Pβ, j ).

m̂α,i
c = mα,i

c − 1

2
f α,i

c
∧ lα,i

c

m̂β, j
c = mβ, j

c − 1

2
f β, j

c
∧ lβ, j

c

Depending on the orientation of couple c, which
must be fixed once for all, the branch vector lc and
the generalized stress ( f

c
, m̂c) associated to c can be

equivalently defined as:

{
lα,i
c = lc,

(
f α,i

c
= f

c

m̂α,i
c = m̂c

)}

or

{
lβ, j
c = lc,

(
f β, j

c
= f

c
m̂β, j

c = m̂c

)}

It will be assumed in the sequel that C, the set of
interacting couples of particles, is generated by pe-
riodicity with r couples noted {c1, c2, . . . , cr }. More
precisely, for γ ∈ Z

3 and c = {Pβ, j , Pα,i }, let
cγ = {Pβ+γ, j , Pα+γ,i } denote the interacting couple
of particles obtained by γ -translation of c. Then,

C = {
cγ

k , k = 1, . . . , r, γ ∈ Z
3
}

It is assumed that for every c in C, there exists a unique
couple of γ ∈ Z

3 and k = 1, . . . , r such that c = cγ

k .
In the absence of external forces and moments, the
balance equation at particle Pα,i writes:

∑

c∈C
f α,i

c
= 0 and

∑

c∈C
mα,i

c = 0 (2)

In the above summations, f α,i
c

and mα,i
c are zero if

particle Pα,i is not one of the two particles of c.
The orientations of all interacting couples being fixed

once for all, and at every interacting couple of particles
c in C, the closed nonempty convex domain of R

3 ×
R

3, Gc, characterizing the strength capacities of this
couple, is introduced:

( f
c
, m̂c) ∈ Gc

Let � denotes the application which associates Gc to
every oriented couple c in C. Assuming the periodicity
of this application:

Gcγ

k = Gc
k for all k and all γ
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it is possible to replace in the structural analysis the
periodic lattice by a homogeneous continuum “effec-
tive” material with yet unknown strength domain. The
task of the homogenization analysis is the determina-
tion of the macroscopic strength domain of the effective
material.

For periodic interaction forces and moments in the
infinite lattice such that

Icγ

k
= Ick for all k and all γ, (3)

the balance Equations (2) at particles Pα,i and P0,i

are the same. Moreover, k and i being fixed, there
exists at most one γ ∈ Z

3 such that P0,i is one of
the two particles of cγ

k , and in this case ( f 0,i
cγ

k
, m0,i

cγ

k
) is

noted ( f i
k
, mi

k). Otherwise, ( f i
k
, mi

k) is zero. Hence, (2)
writes, for i = 1, . . . , n:

∑

k=1,...,r

f i
k

= 0 and
∑

k=1,...,r

mi
k = 0 (4)

Let � be the overall symmetric second order stress
tensor applied to the infinite lattice. The set of statically
admissible periodic interactions forces and moments
associated to � is:

SA(�) =
{

(Ic)c∈C/(3), (4) and

� = 1

|Y |
∑

k=1,...,r

f
ck

⊗s l−ck

}
(5)

where (a ⊗s b)i j = 1
2 (ai b j + a j bi ) is the symmetric

part of the dyadic product of a and b.
The macroscopic strength domain, denoted by Ghom,

is the convex domain of macroscopic stress states �

such that there exists a periodic distribution of inter-
action forces and moments (Ic)c∈C in SA(�), with
( f

ck
, m̂ck

) in Gck for all k:

Ghom =
{
�/ ∃(Ic)c∈C ∈ SA

(
�

)
,

( fck , m̂ck
) ∈ Gck for all k

}
(6)

3. Material symmetry
As it has been seen above, the lattice is completely char-
acterized by (P, C, �) and the determination of Ghom

requires the resolution of the unit cell problem (6).
When the periodic lattice possesses a material symme-
try property, the number of unknowns to be determined
can be reduced as follows. Let O be an orthogonal sec-

ond order tensor: O−1 = t O . For det (O) equal to

+1, O is a rotation on R
3. The image by O of particle

P ∈ P of coordinates vector X is particle P� of co-
ordinates vector O.X .P� = {P�, P ∈ P} denotes the
image of P by O . Similarly, the images c� and C� of
c ∈ C and C are respectively defined. By definition of

Gc�

, ( f
c�
, m̂c�) ∈ Gc� ⇔ ( f

c
, m̂c) ∈ Gc, where

f
c�

= O. f
c

and m̂c� = det(O)O. m̂ c are the images of
the force vector and the moment pseudo-vector associ-
ated to c, respectively. It can be easily seen from (6) that
the macroscopic strength domain (Ghom)� associated to
(P�, C�, ��) is such that �� ∈ (Ghom)� ⇔ � ∈ Ghom

where �� = O.�.t O is the image of �. Moreover,

(Ic)c∈C is associated to � ∈ Ghom by (6) if, and only

if, its image (I �

c�)c�∈C� is associated to �� ∈ (Ghom)�.
By definition, O is a material symmetry of the pe-

riodic lattice if (P�, C�, ��) = (P, C, �). It results
that (Ghom)� = Ghom, which means that �� is in Ghom

if, and only if, its image �� is in Ghom. Now, if the

material symmetry O is such that O (m) = Identity,

then for invariant � = ��, one can restrict the anal-
ysis in (6) to invariant periodic forces and moments.
Indeed let (Ic)c∈C be associated to � = ��. Define

(I �
c )c∈C as the arithmetic average of (Ic)c∈C and its im-

ages by O, O (2), . . . , O (m−1). Obviously, (I �
c )c∈C is in

SA(�) and it is invariant with respect to O . In addi-

tion, ( f
c
, m̂c) and all its images being in Gc, ( f �

c , m̂�
c)

is also in Gc by convexity. Therefore, (I �
c )c∈C can be

associated to � = �� in (6).

4. Ultimate yield strength of non-uniform
3D beam

Contained in this section is a discussion concerning the
yield strength which is associated to a current beam of
the lattice: Gc is computed in terms of the geometry
and the material properties of the beam.

4.1. General 3D Euler-Bernouilli beam
model

Consider a beam of length l and and non-uniform sec-
tion S(s) with − l

2 ≤ s ≤ l
2 , as shown in Fig. 2. Under

the action of the forces and moments at the ends of the
beam (i.e., at points A : s = − l

2 , and B : s = l
2 in Fig.

2), it is assumed that the axial stress σss(s, y, z) is the
only non negligible stress component. The axial force
N (s) and the bending moments My(s) and Mz(s) are:

N (s) =
∫

S(s)
σss(s, y, z)dydz (7)

My(s) =
∫

S(s)
zσss(s, y, z)dydz (8)

Figure 2 Beam with non-uniform thickness.
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Mz(s) =
∫

S(s)
−yσss(s, y, z)dydz (9)

The balance equation imposes:

N (s) = N (10)

My(s) = M̄y + s Qz (11)

Mz(s) = M̄z − s Qy (12)

where Qy and Qz are the shear forces, and M̄y and M̄z

are the bending moment at the midpoint of the beam
(s = 0).

The branch vector and the generalized stress associ-
ated to couple c = {A, B}, which is oriented from A to
B, are

lc =






l

0

0




 , f

c
=






N

Qy

Qz




 , m̂c =






T

M̄y

M̄z






where T is torsion.
The strength criterion writes:

|σss(s, y, z)| ≤ σ ∗ (13)

where σ ∗ is the tensile yield stress. The ultimate yield
strength domain of the beam, Gc, is the convex set of
generalized stress ( f

c
, m̂c) = (N , Qy, Qz, T, M̄y, M̄z)

such that there exists σss(s, y, z) satisfying (7-11-
12) for all s, and (13) for all (s, y, z). Of inter-
est is the special case where (s, y) is a plane of
material symmetry of the beam: (y, z) ∈ S(s) ⇔
(y, −z) ∈ S(s), for all (s, y, z). Using uniaxial stress
field σ

�
ss(s, y, z) = σss(s, y, −z), it is easy to see

that: ( f
c
, m̂c) ∈ Gc ⇔ ( f

c
, m̂c)� ∈ Gc, where

( f
c
, m̂c)� = (N , Qy, −Qz, −T, −M̄y, M̄z) is the im-

age of ( f
c
, m̂c) by (s, y)-plane symmetry. Moreover,

using σ
�
ss(s, y, z) = 1

2 (σ �
ss(s, y, z) + σss(s, y, z)), it is

clear that: ( f
c
, m̂c) ∈ Gc ⇒ ( f

c
, m̂c)� ∈ (Gc)�, where

( f
c
, m̂c)� = (N , Qy, 0, 0, 0, M̄z) = 1

2 (( f
c
, m̂c) +

( f
c
, m̂c)�) is the (s, y)-plane projection of ( f

c
, m̂c), and

(Gc)� ⊂ Gc is the subset of ( f
c
, m̂c) in Gc such that

the corresponding uniaxial stresses verify σ
�
ss = σss .

The characterization of (Gc)� follows the method
proposed by [8] for 2D beams. For any couple of real
numbers (ε, χ), and for fixed s, the support function,
p(ε, χ ; s), of the convex set of (N (s), Mz(s)) such that
there exists σss satisfying (7-8-9) and σ

�
ss = σss is

introduced:

εN (s) + χ Mz(s) =
∫

S(s)
(ε − χy)σss(s, y, z)dydz

≤ σ ∗
∫

S(s)
|ε − χy|dydz ≡ p(ε, χ ; s)

(14)

For χ = 0, (14) is equivalent to |N (s)| ≤ |S(s)|σ ∗,
where |S(s)| is the area of section S(s). For χ 
= 0,
one can divide by |χ | both members of inequality
(14). Moreover, the limit case ε → ±∞ provides also
|N (s)| ≤ A(s)σ ∗. This means that inequality (14) can
be restricted without loss of generality to χ = ±1.

Introducing the following notations:

−1

2
≤ s̃ = s

l
≤ 1

2
, ỹ = y

l
, z̃ = z

l

Ñ = N

l2σ ∗ , Q̃ = Qy

l2σ ∗ , M̃ = M̄z

l3σ ∗ (15)

and optimizing (14) for χ = ±1 over all ε and all s̃, it
is found that (Gc)� is completely characterized by:

−g(−Ñ , −Q̃) ≤ M̃ ≤ g(Ñ , Q̃) (16)

where

g(Ñ , Q̃) =
Inf

ε̃∈R,|s̃|≤ 1
2

{∫

S̃(s̃)
|ε̃ − ỹ|d ỹdz̃ − ε̃.Ñ + s̃.Q̃

}
(17)

If (s, z) is a plane of material symmetry of the beam:
(y, z) ∈ S(s) ⇔ (−y, z) ∈ S(s), for all (s, y, z), then
g(Ñ , Q̃) = (g(−̃N , Q̃). If (y, z) is a plane of mate-
rial symmetry of the beam: (y, z) ∈ S(s) ⇔ (y, z) ∈
S(−s), for all (s, y, z), then g(Ñ , Q̃) = g(Ñ , −Q̃). For
uniform sections: S(s) ≡ S,

g(Ñ , Q̃) =
Inf
ε̃∈R

{∫

S̃
|ε̃ − ỹ|d ỹdz̃ − ε̃.Ñ

}
− 1

2
|Q̃| (18)

4.2. The non-symmetric material
distribution

Consider a beam having circular Sections centered at
y = z = 0, and the following non-symmetric material
distribution:

|S̃(s̃)| = S̃m

(
1 + �S̃

(
(s̃ − s̃0)2

1
12 + s̃2

0

− 1

))
(19)

where

– |S̃(s̃)| is the area of section S̃(s̃)
– S̃m is the mean normalized Section area such that

the volume of the beam is:

V = S̃m .l3

< |S̃| > =
∫ 1/2

−1/2
|S̃(s̃)|ds̃

= 1

l3

∫ l/2

−l/2
|S(s)|ds = S̃m

– �S̃ is the relative variation of section
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Figure 3 Strength domain of the beam in the Ñ = 0 plane for three (�S̃, s̃0).

– − 1
2 ≤ s̃0 ≤ 1

2 is the coordinate where beam section
is minimum.

Parameter s̃0 is a new defect parameter which de-
scribes the non-symmetry of the material distrubution
in the cell edges. For �S̃ = 0, the material distribution
is uniform and S̃m = S

l2 . For �S̃ 
= 0, the minimum
Section S̃m(1 − �S̃) is reached at s̃ − s̃0. In the special
case s̃0 = 0, the strut is symmetric.

Function g(Ñ , Q̃), which is defined by (17), is nu-
merically computed for three cases:

– The uniform case �S̃ = 0 for which g(Ñ , Q̃) is
given by (18).

– The symmetric case �S̃ = 0.2 and s̃0 = 0.
– The non-symmetric case �S̃ = 0.2 and s̃0 = 0.2.

Fig. 3 shows the strength domain of the beam, (16),
for N = 0, in the plane of the normalized shear force

Q̃
Sm2 and the normalized bending moment M̃

S̃m2 . It is ob-
served that the effect of s̃0 is to rotate and to deform
the strength domain in the N = 0 plane. For N = 0,
depending on the ratio of Q̃

S̃m2 and M̃
S̃m2 , a non-symmetric

material distribution will increase or decrease the plas-
tic collapse strength of the beam. Fig. 4 shows the
strength domain for Q = 0, in the plane of the nor-
malized normal force Ñ

S̃m and the normalized bending

Figure 4 Strength domain of the beam in the Q̃ = 0 plane for three (�S̃, s̃0).
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Figure 5 Quadratic approximation of the strength domain of the beam in the Ñ = 0 plane for (S̃m = 0.15,�S̃ = 0.2, s̃0 = 0.2).

Figure 6 Quadratic approximation of the strength domain of the beam in the Q̃ = 0 plane for (S̃m = 0.15,�S̃ = 0.2, s̃0 = 0.2).

moment M̃
S̃m2 . It is clear that s̃0 has no influence on the

plastic collapse strength for Q = 0.
Besides, these numerical results fit very well with

the following quadratic expression for g(Ñ , Q̃):

gapp(Ñ , Q̃) = Inf
|s̃|≤ 1

2

{
α.

Ñ 2

R̃(s̃)
+ β.R̃3(s̃) + s̃ Q̃)

}

(20)

where

– R̃(s̃) is the radius at the coordinate s̃
– β = 4

3

– α = − 4
3π2

Figs 5 and 6 show the comparaison between g(Ñ , Q̃)
and gapp(Ñ , Q̃) for the non-symetric geometry (S̃m =
0.15, �S̃ = 0.2, s̃0 = 0.2) in the plane N = 0 (Fig. 5)
and Q = 0 (Fig. 6).

5. Tetrakaidecahedral lattice
In this Section, the unit cell problem (6) is set and
solved for a tetrakaidecahedral lattice of beams that
are rigidely connected in vertices: the set SA(�) of
statically compatible generalized stresses is studied and
the effective ultimate yield strength domain of the foam
is analytically determined.
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Figure 7 (a) Unit cell of a tetrakaidecahedral lattice, (b) Unit cell with �S̃ 
= 0, s̃0 
= 0.

5.1. Unit cell problem
The tetrakaidecahedral lattice corresponding to the
well-known Kelvin partition of the 3D space is con-
sidered in this paper. Fig. 7a. It has been shown by
Pradel [11] that this lattice is composed of 6 types of
particles: p1, p2, . . . , p6 and of 12 oriented beams of
length l that generate the lattice by periodicity accord-
ing to the vectors which link p5 to (p5)1, (p5)2 and
(p5)3, or equivalently, p6 to (p6)1, (p6)2 and (p6)3. The
unit cell volume is 8

√
2l3 and the components in the

reference of Fig. 7a of the branch vectors are:

lα1,α2,α3
= l√

2




α1

α2

α3





where αi ∈ {−1, 0 + 1}, with i = 1, 2, 3, are such that
|α1| + |α2| + |α3| = 2. It is assumed that the material
distribution in the beams is such that (2, 3), (3, 1) and (1,
2) are three planes of material symmetry of the lattice.
Therefore, there exist three types of beams as shown
in Fig. 7b. Of interest are the macroscopic stress states
� which are invariant under the action of these plane
symmetries. Therefore, the analysis is restricted to:

� =






�1 0 0

0 �2 0

0 0 �3




 (21)

It is found that the periodic interaction forces and mo-
ments (Ic)c∈C in SA(�) which are invariant with re-
spect to these symmetries are of the form:

f
α1,α2,α3

= 2l2






α1�1

α2�2

α3�3






m̂α1,α2,α3
=






α2α3 M̄1

α1α3 M̄2

α1α2 M̄3






where M̄i , with i = 1, 2, 3, are undetermined moments.
According to the analysis above, diagonal � (21)

in Ghom are such that there exist M̄i , with i = 1, 2, 3,

verifying:

−gi (−Ñi , −Q̃i ) ≤ M̃i ≤ gi (Ñi , Q̃i ) (22)

where (Ni , Qi ) are the normal and shear force of the
beam defined by α1, α2, α3 such that αi = 0 and the
other two α being equal to +1. They are expressed in
terms of � as:

(
Ñi

Q̃i

)

=
√

2

lσ ∗ P
i






�1

�2

�3




 (23)

where

P
1

=
(

0 1 1

0 −1 1

)
P

2
=

(
1 0 1

−1 0 1

)

P
3

=
(

1 1 0

−1 1 0

)

Moreover, for i = 1, 2, 3, inequality (22) is compatible
if:

gi (Ñi , Q̃i ) + gi (−Ñi , −Q̃i ) ≥ 0 (24)

5.2. Regular non-symmetric cells
The analytical model described above is utilized to
investigate the effect of non-symmetric material distri-
bution in the cell edges of regular tetrakaidecahedral
lattice on the overall strength of these materials.

Recall that Ghom is the closed convex set of � such
that inequalities (24), with i = 1, 2, 3, are verified
with (Ñi , Q̃i ) given by (23), and g(Ñi , Q̃i ) defined
by (17) and approximated by (20). It is assumed that
beams of types 1 and 2 have the same material dis-
tribution ((S̃m)i = S̃m, (�S̃)i = �S̃, (s̃0)i = s̃0) for
i = 1, 2, and that beams of types 3 are uniform
((S̃m)3 = S̃1(− 1

2 ) = S̃2(− 1
2 ), (�S̃)3 = 0, (s̃0)3 = 0).

Fig. 7b. It should be emphasized that the relative den-

sity of this lattice si 3
2
√

2
S̃m(1 + �S̃

3

1
6 +s̃0
1

12 +s̃2
0
).

5.3. Results
Fig. 8 represents the yield surface in the �1 = �2 plane
for S̃m = 0.15 and three (�S̃, s̃0) : (�S̃ = 0, s̃0 = 0)
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Figure 8 Yield surface in the �11 = �22 plane for three (�S̃, s̃0).

Figure 9 Yield surface in the �11 + �22 + �33 = 3p plane for S̃m = 0.15,�S̃ = 0, s̃0 = 0 and four values of p.

(the uniform case), (�S̃ = 0.2, s̃0 = 0) and (�S̃ =
0.2, s̃0 = 0.2). It is observed that s̃0 has a weak effect
on the strength domain, whereas �S̃ changes its shape.
For �S̃ 
= 0, the strength domain area is not affected.
On the other hand, the yield surface is more contracted
in the �3 = �1 direction and it is more expanded in
the perpendicular direction. Depending on the loading
direction, the non-uniform material distribution is more
or less resistant than the uniform one.

Figs. 9–11 show the yield surface in the �1 + �2 +
�3 = 3p plane, for the same three selected values of

(�S̃, s̃0) and for four values of p : 3p = 0, 3p =
0.05, 3p = 0.01 and 3p = 0.015. Parameter s̃0 has a
weak effect on the strength domain (Figs 10 and 11).
It should be emphasized that parameter �̃S has the
most significant effect on the overall strength (Figs,
9 and 10). For p ≤ 0.01, the non-uniform material
distribution is more resistant than the uniform one. For
p = 0, 20% of relative variation of the section (�̃S =
0.2) increases up to 56% the strength in the deviatoric
stress direction SX X = 0 and up to 64% in the stress
direction SY Y = 0.
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Figure 10 Yield surface in the �11 + �22 + �33 = 3p plane for S̃m = 0.15,�S̃ = 0, s̃0.2 = 0 and four values of p.

Figure 11 Yield surface in the �11 + �22 + �33 = 3p plane for S̃m = 0.15,�S̃ = 0.2, s̃0 = 0.2 and four values of p.

6. Summary
A rigorous method for the homogenization of gen-
eral elastoplastic periodic lattices has been applied to
3D cellular solids. Ultimate yield surface of a non-
uniform 3D Euler-Bernouilli have been determined
with this method. Results shows that defects have an
influence on the shape of the plastic domain. Then, the
general model have been used to solve unit cell problem
for tetrakaidecahedral lattice. This systematic method
is well adapted for non-symmetric material distribu-
tion. Defects of this type have been introduced and
new results concerning nonsymmetric material distri-

bution in the cell struts of the foam have been obtained.
They show that the non-uniform material distribution
increases the plastic collapse strength, except for par-
ticular loading directions. The non-symmetry of the
material distribution has no significant influence on the
yield surface.
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